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Synthesis of r/2-Coordinated Enamines 
by Amination of a Platinum(II) Coordinated Allene. 
A Chemical and X-ray Diffraction Study 

Sir: 

During our studies on the reaction of amines with Pt(II) 
coordinated allenes,' we observed a novel reaction of primary 
aromatic amines with 1,1 -dimethylallene (DMA), leading to 
r/2-coordinated secondary enamines. To our knowledge this 
observation represents the first example of successful trapping 
of a fairly unstable enamine by a transition metal ion. Since 
the ligand produced can be easily displaced from the metal 
without decomposition, the method can be useful for synthetic 
purposes, even if at present it is hard to speculate about its 
applicability to other metal ions. We report here our prelimi­
nary results in this field, including the first structural char­
acterization of a metal-enamine r)2 complex. 

The /3-ammonioalkenyl complexes (1) obtained upon ad­
dition of primary aromatic amines to CW-PtCl2(DMA)(PPh3)1 

are nearly insoluble in the reaction solvent (CHCl3 or CH2Cl2) 
and indefinitely stable after crystallization. However, they 
undergo a rather unexpected rearrangement if their precipi­
tation is slowed down by the use of larger amounts of solvent, 
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Oc 

Figure 1. Molecular structure of m-dichloro-772-[(Z)-2-chloro-/V-
(3-methylbut-l-enyl)benzenamine](triphenylphosphine)platinum(II). 

giving the corresponding enamine complexes (2). For instance, 
on addition of an equimolar amount of 2-chloroaniline to a 
solution of 1.0 mmol of PtCl2(DMA)(PPh3) in 20 mL of 
CHCl3 while the mixture is kept at room temperature for 8 h, 
a fairly soluble yellow compound (2, Ar = 2-ClC6H4), mp 
151-153 0 C, is obtained in ~80% yield. The molecular formula 

CH3 ^ C H 3 

V - C H 3 W 
/PPh 3 2//^ ,PPh 3 ji 

Cl 7Pt—:-i-C „ *- Cl Pt — 
cl S A 1 ? ci c1 

""<•.<> N - H / v 

H ' \ H VH 
Ar i 

Ar 

2 
2 was inferred by the elemental analysis and the IR2 and 1H, 
and 13C NMR spectra of the compound3 and the 1H NMR 
spectrum of the displaced enamine ligand,4 the ultimate evi­
dence being furnished by the results of an X-ray diffraction 
analysis. The 1H NMR spectrum (270 MHz), recorded at 
room temperature, shows very broad signals for the isopropyl, 
NH, and olefinic protons. At low temperature (—30 0C) the 
spectrum becomes fully resolved, displacing two equally intense 
sets of signals for each CH and NH-proton and for each methyl 
group.3 The observed spectra indicate the presence in solution 
of two slowly interconverting isomers in equal abundance, most 
likely rotamers about the Pt-H axis.5 

Treatment of 2 with sodium cyanide in chloroform solution 
results in the displacement of the coordinated organic moiety 
A r N H C H = C H C H M e 2 without decomposition or en-
amine-imine isomerization,6'7 as evidenced by the 1H NMR 
spectrum of the resulting colorless solution.4 

The structure of 2 (Ar = 2-ClCeH4) was elucidated by a 
three-dimensional X-ray structural analysis.8 Figure 1 shows 
the molecular structure as viewed along the c axis; some in­
ternal geometrical parameters are also indicated. The complex 
displays the usual square-planar arrangement of the ligands 
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around the platinum atom, the deviations from planarity being 
<0.01 A. The enamine is bound to platinum through the ole-
finic C = C double bond, the midpoint of the C = C bond being 
~0.20 A displaced from the principal coordination plane. The 
double bond has a cis configuration and is nearly orthogonal 
to the coordination plane. The nonhydrogen atoms of the 
moiety C H - C H = C H - N H - C lie almost in a plane (de­
viations from planarity are <0.04 A). The phenyl group forms 
an angle of ~10° with this plane, which is tilted of ~20° with 
respect to the normal from Pt to the double bond. Some rele­
vant bond lengths follow: C(arom)—N = 1.39 (2), C(olef)—N 
= 1.37(2), C = C = 1.38 (2) A; the bond angle C-N-C is 124.4 
(5)°. The relatively short distance C(olef)—N [cf. N—Me = 
1.48 (4) A in 4-nitro-Ar,iV-dimethylaniline9] is consistent with 
a substantial amount of conjugation of the nitrogen atom with 
the carbon-carbon double bond,10 as well as with the aromatic 
ring. The Pt—C bond lengths are among the largest observed 
for monoolefin complexes11^12 and are significantly different 
from each other (2.213 ± 0.014 and 2.314 ± 0.016 A; see 
Figure 1). A comparable difference has been found in other 
Pt(II) complexes of olefinic compounds containing electron-
releasing substituents, i.e., ap-(7V,A'-dimethylamino)styrene,13 

a vinyl alcohol,12 and two vinyl ether complexes,14 and is also 
consistent with the negative polarization of the C(2) atom 
arising from the quoted conjugation.12'15 

We have observed the quoted isomerization /3-ammonioal-
kenyl rj1 complex —* ?j2-enamine complex for a variety of pri­
mary aromatic amine derivatives; however, we have found a 
strong dependence of the isomerization rate on the basicity of 
the amine, a poorer basicity favoring the rearrangement re­
action. As two limiting cases, the rearrangement was not ob­
served for thep-anisidine (pA â = 5.3416) derivative, whereas 
for the /7-nitroaniline (pATa = 1.016) derivative only the 
?72-enamine complex was isolable. Moreover, by using N-
deuterated 2-chloroaniline the enamine complex specifically 
deuterated at the isopropyl secondary carbon atom was ob­
tained. These findings suggest that the rearrangement very 
likely proceeds through the attack of an acidic N - H hydrogen 
of the zwitterionic complex (1) on the C(3) carbon atom with 
successive proton transfer from the C( 1) atom to the C(2) atom 
and reconstitution of the double bond between the C(I) and 
C(2) atoms. It should be noted that the stereospecificity of this 
reaction leading to a coordinated cis olefin is also consistent 
with the proposed intramolecular mechanism. 
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2 B 2 Benzoyloxy, a Delocalized a Radical 

Sir: 

In connection with other work we have needed to know the 
spin distribution in the ground state of benzoyloxy radical.1 

Theory alone is of little help. The "doublet-instability" prob­
lem, which afflicts calculations on the allyl radical even at the 
Hartree-Fock limit,2 is compounded in heteroatom-containing 
analogues by alternative 2 and D ground states.3 Calculations 
including limited configuration interaction seem to avoid the 
former problem, but do not permit a clear choice of ground 
state, since they predict 2-11 gaps of <10 kcal/mol for many 
heteroallylic radicals.4 Calculation of formyloxy by STO 
4-3IG CI with geometry optimization predicts that the 2A2 

(II) ground state of Ci1- symmetry lies only 1.4 kcal/mol below 
the 2A' (2 ) state of Cs symmetry.4 
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